Extra Practice Problems 6

More Fun With Friends and Strangers

(From the Fall 2013 midterm exam)

Suppose you have a 17-clique (that is, an undirected graph with 17 nodes where there's an edge between each pair of nodes) where each edge is colored one of *three* different colors (say, red, green, and blue). Prove that regardless of how the 17-clique is colored, it must contain a blue triangle, a red triangle, or a green triangle. (*Hint: Use the theorem on friends and strangers.*)

Bijections and Induction

(From the Fall 2014 midterm exam)

Let $f : \mathbb{N} \to \mathbb{N}$ be a function. We'll say that f is *linearly bounded* if $f(n) \le n$ for all $n \in \mathbb{N}$.

Prove that if $f : \mathbb{N} \to \mathbb{N}$ is linearly bounded and is a bijection, then f(n) = n for all $n \in \mathbb{N}$. (*Hint: You might find induction useful here.*)

A good question to ponder: is this result still true if we replace \mathbb{N} with \mathbb{Z} ?

Odd Rational Numbers

On Problem Set Three, you explored the binary relation ~ over \mathbb{R} defined as follows:

 $x \sim y$ if y - x is an odd rational number.

Here, an odd rational number is a rational number that can be written with an odd denominator.

Prove that every element of $\left[\sqrt{2}\right]_{\sim}$ is irrational.

Long Paths

(From the Fall 2016 midterm exam)

Let G = (V, E) be a graph where every node has degree at least k for some $k \ge 1$. Let P be a simple path in G that has length less than k. Prove that P is **not** the longest simple path in G.